Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation.
نویسندگان
چکیده
Dentin sialophosphoprotein (DSPP) consists of dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). The spatial-temporal expression of DSPP is largely restricted during differentiational stages of dental cells. DSPP plays a vital role in tooth development. It is known that an osteoblast-specific transcription factor, Runx2, is essential for osteoblast differentiation. However, effects of Runx2 on DSPP transcription remain unknown. Here, we studied different roles of Runx2 in controlling DSPP expression in mouse preodontoblast (MD10-F2) and odontoblast (MO6-G3) cells. Two Runx2 isoforms were expressed in preodontoblast and odontoblast cells, and in situ hybridization assay showed that DSPP expression increased, whereas Runx2 was down-regulated during odontoblast differentiation and maturation. Three potential Runx2 sites are present in promoters of mouse and rat DSPP genes. Runx2 binds to these sites as demonstrated by electrophoretic mobility shift assay and supershift experiments. Mutations of Runx2 sites in mouse DSPP promoter resulted in a decline of promoter activity in MD10-F2 cells compared with an increase of its activity in MO6-G3 cells. Multiple Runx2 sites were more active than a single site in regulating the DSPP promoter. Furthermore, forced overexpression of Runx2 isoforms induced increases of endogenous DSPP protein levels in MD10-F2 cells but reduced its expression in MO6-G3 cells consistent with the DSPP promoter analysis. Thus, our results suggest that differential positive and negative regulation of DSPP by Runx2 is dependent on use of cytodifferentiation of dental ectomesenchymal-derived cells that may contribute to the spatial-temporal expression of DSPP during tooth development.
منابع مشابه
Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice.
Runx2 is an essential transcription factor for bone and tooth development whose function in odontoblast differentiation remains to be clarified. To pursue this issue, we examined tooth development in Runx2 transgenic mice under the control of Col1a1 promoter (Tg(Col1a1-Runx2) mice). Endogenous Runx2 protein was detected in the nuclei of preodontoblasts, immature odontoblasts, mesenchymal cells ...
متن کاملThe Prolyl Hydroxylase Inhibitor Dimethyloxalylglycine Enhances Dentin Sialophoshoprotein Expression through VEGF-Induced Runx2 Stabilization
Prolyl hydroxylase (PHD) inhibitors are suggested as therapeutic agents for tissue regeneration based on their ability to induce pro-angiogenic responses. In this study, we examined the effect of the PHD inhibitor dimethyloxalylglycine (DMOG) on odontoblast maturation and sought to determine the underlying mechanism using MDPC-23 odontoblast-like cells. DMOG significantly enhanced matrix minera...
متن کاملβ-Catenin Enhances Odontoblastic Differentiation of Dental Pulp Cells through Activation of Runx2
An intense stimulus can cause death of odontoblasts and initiate odontoblastic differentiation of stem/progenitor cell populations of dental pulp cells (DPCs), which is followed by reparative dentin formation. However, the mechanism of odontoblastic differentiation during reparative dentin formation remains unclear. This study was to determine the role of β-catenin, a key player in tooth develo...
متن کاملWnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis.
We have explored the role of Wnt signaling in dentinogenesis of mouse molar teeth. We found that Wnt10a was specifically associated with the differentiation of odontoblasts and that it showed striking colocalization with dentin sialophosphoprotein (Dspp) expression in secretory odontoblasts. Dspp is a tooth specific non-collagenous matrix protein and regulates dentin mineralization. Transient o...
متن کاملInfluence of the microenvironment on gene and protein expression of odontogenic-like and osteogenic-like cells.
Progenitor cells play an important biological role in tooth and bone formation, and previous analyses during bone and dentine induction have indicated that they may be a good alternative for tissue engineering. Thus, to clarify the influence of the microenvironment on protein and gene expression, MDPC-23 cells (mouse dental papilla cell line) and KUSA/A1 cells (bone marrow stromal cell line) we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 33 شماره
صفحات -
تاریخ انتشار 2005